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The equations of ideal ICITOMagnetlic nyar Uuyuauuua {FMHD) in three dimensions are formulated as a hamiltonian system in
terms of a noncanonical Poisson bracket. The conservation laws for this system are determined and used to construct Lyapunov
functionals that are potentially useful for dealing with stability properties of FMHD equilibrium solutions. Classes of equilibrium
solutions are identified with critical points of these Lyapunov functionals. The FMHD system is also formulated in » dimensions
and the relations among magnetic induction, magnetic field intensity, and magnetization density are discussed from a Lie-alge-
braic viewpoint.

1. Introduction

LA naen A oliwa sxridle thhn wwmsalicane herdewndermnsmaing Af a Ansemonoos 1.2 ¢lant 10 idanlle; AmnmAdizntiomes nnd 1o
YWC 4i€ aca I111E witll LllC llUlllllanl nyul uyucu iiCS 01 4 bUlllplCDDlU ¢ 11U1a uiat is Ucally LCUILIUULLILLE U 1Id
a ferromagnet at the microscopic level. The relation between the magnetic induction B and magnetic field in
tensity H is arbitrary in
B=H+4nM , (1)

where M is the magnetization density. The problem under consideration for liquid ferromagnets thus differs
from the well-known problem of the dynamics of a so-called magnetized liquid, in which the phenomenological
relation B=uH is introduced, with permeability 4 depending on magnetic field, temperature, and density in
a prescribed fashion.

Liaguid ferromagnets have been observed mrm:nmentauy and are potentially useful as ideally so

iquid ferromagnets hav en observed experin and are pote use
materials. The unperturbed equilibrium states of liquid ferromagnets are studied in refs. [1-3].

The linear oscillations of ideally conducting ferromagnetic liquids around equilibrium are classified in ref.
[4] in the incompressible limit (constant density). These oscillations are shown there to be quite unusual,
differing both from the spin waves of a solid ferromagnet and from the magnetohydrodynamics waves (e.g.,
Alfvén waves) in a conducting liquid in the presence of an externai magnetic induction.

In the present work we determine the hamiltonian structure and the resulting conservation laws for the equa-
tions of ideal ferromagnetic hydrodynamics (FMHD) in three dimensions. We also provide the generalization
of FMHD to n dimensions and discuss the relation (1) among magnetic induction, magnetic field intensity,
and magnetization density in the n-dimensional case from a Lie-algebraic viewpoint.

Following ref. [5] the FMHD equations in three dimensions are
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divB=0, 4,B= curl(vXB), (2a,b)
d

d,p=— div(pr) , é (M/p)=gp~'MXH, (3a,b)

3—’: = —sVp+ ﬁ (curl H) X B+MX curl H+ (M-V)H , (4)

where p is the mass density, v is the fluid velocity, s=s(p) is the sound velocity, d/dt=0,+p-V is the material
derivative, and g is the gyromagnetic ratio (a constant). Egs. (1)-(4) form a complete dynamical system for
the evolution of the fluid variables B, p, M, and v in a bounded domain subject to the following boundary
conditions

Bn=0, vr-n=0, HXn=0, (35)

whare 2 1c tha unit «
YYLIVAL I3 10 L1IV UALLL ¥

at some initial time.

The physical content of egs. (2)-(4) can be summarized as follows. According to eq.(2), the divergenceless
magnetic induction B is frozen into the fluid. That is, the flux of B is preserved through every surface element
comoving with the fluid. By (3a), the mass of each comoving volume element is also preserved. However, by
(3b), the specific magnetization M/p of a comoving fluid element precesses around the magnetic field at a
local gyromagnetic frequency, gH. Note that we are treating M/p not as a euclidean vector, but as a set of

1wolidaan onalawe 1imdar satatine Tha ganmateinal natirea Af A /o 13l hannemio claas latar whan wa diasiiee tha
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n-dimensional formulation of FMHD. Finally, the motion equation eq.(4) represents momentum balance, or
generation of circulation of the fluid by a combination of magnetic-field and magnetization forces.

From eqs.(2), (3) we find

Aran

%:0 , m=p~'|M\| (specific magnetization), (6)
and

dQ . L .

E;:O , Q=p~'B-Vm (potential induction) . (7)
That is, m and £ are invariant aiong FMHD flow lines. (Actuaily, (p ~'B-V)"m is also a flow-line invariant

for any integer power N>0). Together, egs.(6), (7), and mass conservation eq.(3a) imply conservation of
the global quantity

Svaa Qailiey

Co= Jd"‘xp(b(m,!)) (8)

D

in the domain of flow D for an arbitrary function @, provided the velocity v is tangential to the boundary dD,
as specified by condition (5b). The quantity d3x in (8) is the three-dimensional volume element.

Three other global conservation laws for the FMHD system (1)-(4) also exist. The first of these is the total
energy,
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where P=pv is the hydrodynamic momentum density and e(p) is the specific energy, satisfying
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de
d<p2 ——) =dp=s®dp. (10)
dp dp
The second global conservation law is for the magnetic helicity
A=Jd3xA-B, (11)
D

where A is the vector potential, satisfying
9,A=vXB-V®, (12)

where @ is single-valued in simply connected domains. When the hydrodynamic gauge, @=v-A, is chosen, the
quantity A=p ~'4-B (specific helicity) is also a flow-line invariant, di/d¢t=0, and 4 can be added to the ar-
guments of the function @ in (8), as well as p ~!B-VJ, etc. Among these quantities, however, only magnetic
helicity (11) is gauge invariant. Finally, the hydrodynamic momentum for FMHD, [ d*x P, is conserved, by

8. P, =—[Pv—HB'+(p+H*/8n)d}] ; (13)
provided the total pressure (p+H?/8n) vanishes on the boundary.

2. Hamiltonian formulation of FMHD

The hamiltonian structure of FMHD consists of the hamiltonian functional given by the energy H in (9)
and Poisson bracket defined by

oF 8 X SH
{H,F}._—i { ((Pa +6P) ’8 —+(B9;,— 0, B 61)8BJ+M,96,8M)
8F . OH ; eq  OH SF( SH 8H>}
+ 5 ajpSP SB’ (aB d;B ak) 6M OMy 5, +g€qs° 5M, (14)

In the Poisson bracket (14) the operator d;==3d( )/dx’ acts to the right on each factor it multiplies. We sum
on repeated indices, i, j, k=1, 2, 3 and «, §, 0=1, 2, 3. The quantity €,,7 is the totally antisymmetric tensor
in three dimensions and represents the structure constants of the Lie algebra SO(3).

By using the hamiltonian H in (9) and the Poisson bracket { , } defined in (14), the FMHD equations
(2)-(4) re-emerge in the form of a hamiltonian system, i.e., as

0,F={H,F}, Fe{P,p,B,M}. (15)
The variational derivatives of H are given by the formula

SH= f d’x (v’8Pj+ (e+p/p—1/2)8p+ 4—11‘ H,.st—HﬂaM,,> . (16)

D

Note the dual role played in three dimensions by the magnetic field intensity H in (16). We will come back
to discuss this when we treat the n-dimensional case, below. For now, substituting the variational derivatives
from (16) into the Poisson bracket (14) produces the following dynamical equations,

atp={H,P}=—(pV1),j ’ (173)
9,B'=1{H, B'Y = — (8,B'—5:B*3,)v'= [curl (vX B) | —v' div B, (17b)
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(gl,fuaz{h', 1"\/1’0}=(1‘Vfalf')J—gcaﬁazw,,”ﬂ, (176)
| 1 .
8,P;={H,P}=—(Pv),—Pv,—p(e+p/p—1>/2), — an B/(H, —Hy)+ = H, div B+ MsHY (17d)

Egs.(17a) and (17b) recover the FMHD equations (3a) and (2b) for mass conservation and magnetic in-
duction, provided div B=0. Using eqs.(17a) and (17b) then converts eqs.(17¢) and (17d) into the desired
FMHD forms (3b) and (4), respectively. This almost completes the hamiltonian formulation of the FMHD
equations. It remains to show that the bilinear, skew-symmetric Poisson bracket (14) satisfies the Jacobi identity,

(F,{G,H}} + {G,{H,F}} + {H,{F,G}) =0 VF,G,H. (18)

We verify the Jacobi identity by observing that (14) is the natural Poisson bracket on the dual space of the
semidirect-product Lie algebra

=Ds(A°@A’®(A°®g)) , (19)

composed of vector fields D on R” (n=3 in the present case) acting on scalar functions /4°, two-forms /4°, and
functions 4°®g taking values in the Lie algebra denoted g-so(3) (with commutator given by g times the usual
s0(3) commutator). The symbols s, @, and @ in (19) denote semidirect product, direct sum, and direct prod-
uct, respectively. In the semidirect product (19) D acts on itself by commutation of vector fields and acts on
differential forms A%, k=0, 2, by Lie derivation. Dual coordinates are: P dual to vector fields in D; p, to func-
tions in A% B, to two-forms A%, and M to SO(3)-valued functions in A°®g. Since the Poisson bracket is linear
in these coordinates, it satisfies the Jacobi identity by virtue of the corresponding identity on the Lie algebra.

For further discussion and exampies of Poisson brackets of semidirect-product type appearing in the physics
of ideal fluids, see refs. [6-8] and various papers in ref. [9] and refs. [10,11]. When M is absent both in the

hamiltonian (9) and in the Poisson bracket (14\ we return to nrdmm‘v magnetohvdrodvnamics (MHD\ for

................ S0 DAL OO DIalRl CICLRIN 0 OIANAlY INapNCR0R YCIOQ YIIAIIIICS (Avalt 2/

which the hamiltonian structure was first given in ref. [12] and shown to be dual to a semidirect- product Lie
algebra in ref. [6].

Conservation of energy H in (9) now follows from the hamiltonian formulation; by skew-symmetry of the
Poisson bracket {H, H}=0. Also, conservation of C,in (8) follows from the degeneracy of the Poisson bracket
(14), namely

(Co, F}=0 YFe{P,p,B,M). (20)

In particular, Cy Poisson-commutes with the hamiltonian A and so is conserved.

Functionals satisfying (20) are said to be Casimirs for the Poisson bracket. In terms of the lagrangian de-
scription of FMHD, the Casimirs Cy in (20) generate canonical transformations that relabel lagrangian fluid
elements, without changing the local values of the eulerian dynamical variables {P, p, B, M}. Hence, eq.(20)
foilows in the eulerian representation of FMHD for any functional F of the eulerian variabies.

One immediate observation about such Casimirs is that they can be used to construct Lyapunov functionals
for mvmngatmp Qm}'nhtv of equilibrium solutions. For a description of this method and many examples of

Lyapunov stability conditions determined by using Casimirs in ideal fluid and plasma dynamics see ref. [10].
For now, we simply comment that a wide class of FMHD static equilibrium solutions correspond to the critical
points of the sum H.=H+ C,. In particular, the equilibrium relation is satisfied at such critical points, namely

a,F:{HC,F}=O when SHC=0. (21)

Moreover, the linearized dynamics around such equilibrium solutions that are critical points of H preserves
the second variation 8%H¢; since 182H is the hamiltonian for the linearized dynamics around such critical
points. Consequently, those equilibria for which the second variation §?H_. is of definite sign will be Lyapunov
stable (in the norm defined by the quadratic form 82H) under the linearized dynamics. See ref. [10] for more
details about hamiltonian methods for establishing Lyapunov stability conditions.
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The Poisson bracket (14) for FMHD in three dimensions can be written in terms of a hamiltonian matrix
operator b, as
{(H, Fy= b, (22)
) 1° 82 ’

where z is the column vector (P, p, B, M)' and superscript t denotes transpose. Explicitly b, for three-di-
mensional FMHD is given by the skew-symmetric matrix operator,

3,P,+P3, pd, Bd,—3,B*s Mﬂa,.l

b=| 9P 0 0 0 (23)
la .B'—8iB%3, 0 0 0
M, 0 0 2€asM,

The Casimirs Cy in (20) satisfy b,-8Cs/82=0, i.e. the variational derivatives of Cg are null eigenvectors of
the hamiltonian matrix b;.

Now, ordinary MHD without ferromagnetism is a hamiltonian system in an arbitrary number of spatial di-
mensions # [6]. The hamiltonian matrix for MHD in three dimensions in terms of magnetic induction B is
simply (23) without the last row and column for the magnetization density. The corresponding hamiitonian
matrix for MHD in » dimensions generalizes to

ajP,"‘I'I)ja,' pa, - jk,i+ajBik+akle
Ian,[ +Blnam +Bmlan 0 0 '

with the corresponding Poisson bracket given by
OF oH oH OH
{H,F}=— [d"x [g((ajPi+f;6i)—g;+p6,g—p +(—By,+9; B,k+6kB,,) )
v [+) 7 or; U, k/

(SF SF (B 4B ; PRy
" 3B, \ s T EnOm T %) J5p, |

_—~
N
n

N

In egs.(24) and (25) the quantity B;; is a skew-symmetric two-form in R” which can be identified with a vector
B only for n=3. The hamiltonian matrix (24) is naturally associated with the dual of the Lie algebra

'

L2= S(xxoelxn_z) 3y (26)

with dual coordinates: P dual to vector fields in D, p, to functions in 4% and B, to (n—2)-forms A"~2,

The hamiitonian matrix for MHD in » dimensions may aiso be expressed in terms of the vecior potential
A, i=1, 2, .., n, with B;=A, ;—A;,. Namely,
b,=— a,0 0 0 . (27)

| A4;;+A4;0; 0O 0 |

with corresponding Poisson bracket given by

D
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T8 SH SH 8H

OF dF 8H
+<5_p dip+ Sz(A,J +A13,')>§17j], (28)

which is associated with the Lie algebra

Ly=Ds(A°®A""") . (29)
The map B;;=A4;,—A,, relates the two hamiltonian matrices (24) and (27). This map, written in the language
of differential forms as B=dA4, is the natural hamiltonian map generated by the homeomorphism of Lie algebras
ids(id®(—d)): Ly —»L; . (30)

We seek an #-dimensional version of the FMHD equations (1)~(4). It is natural to suppose that the derived
equations are also hamiltonian, and it is easy to see that the corresponding hamiltonian structure, which gen-
eralizes both the three-dimensional FMHD form (23) and the forms (24) and (27) for n-dimensional MHD
is given by the following formulae: in the B,-representation

by b, Mgd, (31)

ajMa gtaﬁaMa

and in the 4-representation

by = bs Mpdi | (32)

ajMa gtaBgMa

where ?,;” are now the structure constants of a Lie algebra g (g=so(3) for the three-dimensional case of FHMD
(24)) in a basis {e,}. The matrices (31) and (32) are naturally associated with the duals of the Lie algebras

Ly=Ds(A°@A" @ (A°®g)) , (33)
t=Ds(A°@A" '@ (4°®g)), (4

respectively. Thus, M= (M, )eA"®g* is now a g*-valued density on R”.

The n-dimensional interpretation of the FMHD hamiltonian H in (9) is slightly less obvious. Clearly, the
expression B—4nM, as it stands, does not make sense in n dimensions; but what is needed is only | B—4nM|?
the length squared in H. Thus, we need n-dimensional interpretations of the expressions |B|%, |M|?, and M-B.
Firstly, there is no problem with the term |B|? it is simply {BYB,. (Remember, we fixed coordinates on R”;
otherwise we would have to write down a metric on R”, extend it to 42 (R"), and write B2= (B, B)d(vol), where
d(vol) is the volume element formed from the metric.) Secondly, the expression | M|? only makes sense pro-
vided we have a metric on g*, which we assume to be nondegenerate and g-invariant; this is equivalent to hav-
ing an invariant nondegenerate metric { , ) on g itself. The requirement of invariance of the metric assures
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us that the expression {M|2= (M, M)=M"*M, is G-invariant with respect to the Lie group G whose Lie ge Ta
is g. [Here again, we use fixed coordinates on R" to decompose M as d"x®M, where M=M_e®, so that

| M|2=d"x(M, M).] Thirdly, to make sense out of the expression M-B, we assume that we are given. (1)a
representation r: g—»End(V), V=R", thus making V and V AV into g-modules, and (2) a homomorphism of
g-modules L: g*-»>VAV. Then extending L naturally into the homomorphism of A4° modules
A"®g*->A4"® (V A V) via the formula

L(6v)=6L(v), feA", veg*, (35)
we define
M-B:=<(L(M),B>, MecA"®g*, BeA?*(R")=R"™AR"™, (36)

In coordinates, if L(v,€%) =x*Yv,0; A 0; (Where-3,=3/dx’ and we identify R” with its tangent space T,(R") at
any point aeR"), and M=d"x®M,e* B=B,dx’' A dx/, then (36) becomes

M-B= d"x x*/M,B,; , (37)

where y*Y is a constant. Summarizing, the hamiltonian H for n-dimensional FMHD becomes
H= jd"x (2—lplP|2+pe(p))+ gJ d"xB2+21tJ (M, M) — J (L(M), B> . (38a,b)

(In the A-representation, simply substitute B=d4 in (38b).) For the original case of FMHD in three dimen-
sions, we have n=3, g=50(3) =50 (3)*~R*~R*~R>AR? L=id, y*Y= — 4¢*/, the totally antisymmetric ten-
sor, the metric on g~ R> coincides with the euclidean metric on R*, and we recover from (38) the hamiitonian
(9).

Remarks. The reader may have wondered why we have not just let L be a linear map, in which case formula
Kemarks. 10 reader may nave wonaerea wny we nave not just :i¢t L D¢ a unear map, in wiich ¢asc iermul

(36) would still make sense, but would require in addition that L be a homomorphism of g-modules. The
reason is as follows: this requirement is equivalent to the G-invariance of the expression M- B. Indeed, if M= 6v,
then for any seg we have

(h.M)-B=(L(h.6v), B> =6(L(h.v), B> =0{h.L(v), B> = —6{L(v), h.BY = —M-(h.B) ,

where A.( ) stands for 7(4)( ). In particular, if G acts isometrically on R” (so that g is forced to be so(n)),

than the whale hamiltanian H in (18) i¢ (G.invariant
VliVAd VidWw YYLIWJAW 1ACUILALANVLLAQALL X5 A1 \JU, A0 NJTLLIVCQA ALV,

Since g has an invariant metric, the g-homomorphism L: g*»W:=V A V uniquely defines (and is uniquely
defined by) the g-homomorphism L9 g—»W.

We can now understand the nature of the magnetic field intensity H in general which collapses into H=B—
4nM for the case n=3, g=s0(3): in our notation,

H=B-n(*L(M)), (4)
where
* ATQAF(V*)-AK(V), V=R", (41)

1s the density map generated by the metric on R”.
In ordinary MHD the specific entropy variable 7 is alos present. To include it, one simply changes e(p) in
(38a) into e(p, 1), and adds to the hamiltonian matrices b5 and b the extra column and row

D
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(42)

n;

This is a particular (cocycleless) case of the basic situation that in quasi-hamiltonian mechanics defines the
Lie-algebraic relative Poisson bracket C=°(W*) X C*(g*)—-C>*(W*) via the formula [13]

IF Yy = —(df,
Sl

cavsas Y (AF ) Fe(Co(W*) fe C®(a*) e W* (43)
[CEW \ VI LE) (u) 7\ u LSS T B SV ATy

Finally, we remark that the extension of the present case from compressible fluids with internal variables

it nb s oxottla Inim e od i PPN S PR, N, L ¥ SN i o

uucnabuus wiLkl aucuau H1agliCLiv umub, to lllC Situation Ul IlUlldUClldll Idllg—l\’llllb quau(—gluuu pldbllld lll'
teractions in the magnetohydrodynamic limit is treated in ref. [14].
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